2) a) \(K M^2 = K L^2 + L M^2 \)

b) Triangle PQR rectangle en P : \(Q R^2 = Q P^2 + P R^2 \)
Triangle PSR rectangle en S : \(P R^2 = P S^2 + S R^2 \)
Triangle PTS rectangle en T : \(P S^2 = T P^2 + T S^2 \)
Triangle PSQ rectangle en S : \(P Q^2 = P S^2 + Q S^2 \)
Triangle QST rectangle en T : \(Q S^2 = Q T^2 + T S^2 \)

3) Le triangle ERL est rectangle en R.
On peut utiliser le théorème de Pythagore :
\(E L^2 = E R^2 + R L^2 \)
\(E L^2 = 9^2 + 12^2 \)
\(E L^2 = 81 + 144 \)
\(E L^2 = 225 \)
\(E L = \sqrt{225} \)
\(E L = 15 \text{ cm} \)

4) Le triangle ... est rectangle en ...
On peut utiliser le théorème de ...
\(I L^2 = O I^2 + O L^2 \)
\(I L^2 = ... + ... \)
\(I L^2 = ... + ... \)
\(I L^2 = 400 \)
\(I L = \sqrt{400} \)
\(I L = 20 \text{ cm} \)
5. Le triangle est rectangle en ...
On peut utiliser la ...
\[AC^2 = AR^2 + RC^2 \]
\[52^2 = AR^2 + 48^2 \]
\[2704 = AR^2 + 2304 \]
\[AR^2 = 2704 - 2304 \]
\[AR^2 = 400 \]
\[AR = \sqrt{400} \]
\[AR = 20 \text{ mm} \]

6. Le triangle est rectangle en ...
On peut utiliser la ...
\[ZX^2 = KZ^2 + KX^2 \]
\[68,9^2 = KZ^2 + 68^2 \]
\[4747,21 = KZ^2 + 4624 \]
\[KZ^2 = \ldots - \ldots \]
\[KZ^2 = \]
\[KZ = \sqrt{123,21} \]
\[KZ = 11,1 \text{ mm} \]

8. a. \[\sqrt{3} \] 2,8
 b. \[\sqrt{28,86} \] 5,4
 c. \[\sqrt{3,4} \] 1,8
 d. \[\sqrt{2,25} \] 1,5
 e. \[\sqrt{0,6} \] 0,8

\[\begin{array}{|c|c|} \hline \text{a} & \text{b} & \text{c} & \text{d} & \text{e} \\ \hline \sqrt{3} & \sqrt{28,86} & \sqrt{3,4} & \sqrt{2,25} & \sqrt{0,6} \\ 2,8 & 5,4 & 1,8 & 1,5 & 0,8 \\ \hline \end{array} \]
Le triangle ABC est rectangle en C. On peut utiliser le théorème de Pythagore:

\[AB^2 = BC^2 + AC^2 \]
\[5,5^2 = 1,4^2 + AC^2 \]
\[30,25 = 1,96 + AC^2 \]
\[AC^2 = 30,25 - 1,96 \]
\[AC^2 = 28,29 \]
\[AC = \sqrt{28,29} \]
\[AC \simeq 5,32 \text{ m} \]

Le sommet de l'échelle se trouve à 5,32 m de hauteur.

a) Le triangle ABC est rectangle en B. On peut utiliser le théorème de Pythagore:

\[AC^2 = AB^2 + BC^2 \]
\[AC^2 = 10^2 + 10^2 \]
\[AC^2 = 200 \]
\[AC = \sqrt{200} \simeq 14,1 \text{ cm} \]

b) Le triangle AEC est rectangle en A. On peut utiliser le théorème de Pythagore:

\[EC^2 = AE^2 + AC^2 \]
\[EC^2 = 10^2 + 200 \]
\[EC^2 = 300 \]
\[EC = \sqrt{300} \]
\[EC \simeq 17,3 \text{ cm} \]