23 Donnez l'écriture décimale des nombres :
 a. 10^4 c. 10^8 e. 10^5 g. $(-10)^1$
 b. 10^6 d. 10^0 f. -10^0 h. $(-10)^0$

24 Écrivez l'aide d'une puissance de 10 :
 a. 1 000 ; 10 000 000 ; 1 000 000 ; 1 000.
 b. cent ; cent mille ; un milliard ; mille milliards.

25 Donnez l'écriture décimale des nombres :
 a. 10^{-1} b. 10^{-4} c. -10^{-3} d. $(-10)^{-3}$

26 Écrivez l'aide d'une puissance de 10 :
 a. 0,01 ; 0,000 0001 ; 0,001.
 b. un dixième ; un millionième ; un millionième.
 c. $\frac{1}{10 000}$; $\frac{1}{100 000 000}$; $\frac{1}{100 000 000}$

30 Mélange
 Écrivez chaque expression sous la forme d'une puissance de 10 :
 a. $(10^9)^4$ f. $10^{-9} \times 10^{12}$
 b. $\frac{10^{-4}}{10^9}$ g. $\frac{10^{-7}}{10^8}$
 c. $10^{12} \times 10^{-8} \times 10^5$ h. $(10^3)^{-6}$
 d. $\frac{10^{-6}}{10^6}$ i. $\frac{10^{10}}{10^5}$
 e. $\frac{10^{41} \times 10^7}{10^{-39}}$ j. $\frac{10^{21}}{10^{-4} \times 10^{-38}}$

38 Voici quatre nombres :
 a. 270 000 000 000 000 000
 b. -369 000 000 000
 c. 0,000 000 000 745
 d. -0,000 000 692 98
Pour chacun de ces nombres, recopiez l'affichage de votre calculatrice si vous choisissez le mode scientifique.

49 La numération moderne
 $3 \times 10^3 + 2 \times 10^2 + 3 \times 10^4 + 4 \times 10^5$ est la décomposition en base « dix » de 3234.
 Décomposons les nombres 4 367 214 et 5 348 en base « dix ».

17 Compléte.

<table>
<thead>
<tr>
<th>Puissance</th>
<th>Définition</th>
<th>Écriture fractionnaire</th>
<th>Écriture décimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>$\frac{1}{10^3}$</td>
<td>..........................</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>$\frac{1}{10^2}$</td>
<td>0,000 000 1</td>
<td></td>
</tr>
<tr>
<td>10^0</td>
<td>$\frac{1}{10^0}$</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

8 Compléte les cases avec des puissances de 10 sachant que le produit de toutes les lignes, colonnes et diagonales vaut 100.

<table>
<thead>
<tr>
<th>10^5</th>
<th>10^{-4}</th>
<th>10^{-7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-2})^3</td>
<td>10^{-4}</td>
<td>(10^{-2})^{-1}</td>
</tr>
<tr>
<td>(10^{-4})^2</td>
<td>10^5</td>
<td></td>
</tr>
</tbody>
</table>

34 Parmi les nombres suivants, quels sont ceux écrits en notation scientifique ?
 a. $5,23 \times 10^{12}$ d. $-1,47 \times 10^6$
 b. $72,43 \times 10^{-8}$ e. $0,251 \times 10^3$
 c. $2,45 \times 100^{-9}$ f. $-7,6$

36 Écrivez les nombres suivants en notation scientifique :
 a. 7 283 d. 12,47 g. $0,67 \times 10^2$
 b. 25 000 e. 0,005 8 h. 159×10^{-5}
 c. 654,98 f. 0,000 149 i. $0,009 \times 10^{-7}$

48 Extrait du brevet
La masse d’un atome de carbone est d ’égal à $1,99 \times 10^{-26}$ kg. Les chimistes considèrent des paquets contenant $6,022 \times 10^{23}$ atomes.

 a. Calculer la masse en grammes d’un tel paquet d’atomes de carbone.
 b. Donner une valeur arrondie de cette masse à un gramme près.
Dans le cœur des micros

1re Partie : Parlons chiffre

En informatique, on utilise seulement des 0 et des 1 pour coder les nombres. On travaille avec un système de numération binaire.

<table>
<thead>
<tr>
<th>Écriture binaire</th>
<th>Écriture décimale</th>
<th>Lien entre les deux écritures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1×2^0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>$1 \times 2^1 + 0 \times 2^0$</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>$1 \times 2^1 + 1 \times 2^0$</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>$1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$</td>
</tr>
</tbody>
</table>

a. Observez bien la table de correspondance précédente puis déterminez l'écriture en binaire des entiers inférieurs à 10.

b. Reproduisez la feuille de calcul suivante sur un tableur :

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nombre en binaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
| 3 | Nombre en écriture décimale | ...

Programmez en G3 le calcul nécessaire pour obtenir l'écriture décimale d'un nombre en binaire.

2e Partie : La table ASCII

L'unité d'enregistrement en informatique est le bit, symbolisé par un 0 ou un 1. Un octet correspond à une suite de huit bits, par exemple 0100 1101.

c. Combien de nombres peut-on écrire avec un octet ?

Pour coder la centaine de caractères présents sur un clavier, on les numérote de 0 à 255 et on les code à l'aide d'un octet. La table qui permet de mettre en correspondance un caractère et le nombre entre 0 et 255 s'appelle la table ASCII. Récupérez-la sur le site des compléments du manuel.

d. Retrouvez l'écriture décimale du nombre 0100 0001. À quelle lettre correspond-il ?

e. À l'aide de la question a., retrouvez l'écriture en binaire des codes des autres lettres de l'alphabet.

f. Choisissez alors quatre mots de moins de dix lettres, codez-les en binaire puis demandez aux autres groupes de les retrouver. Faites de même avec les mots qui vous auront été donnés.